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Supplementary Methods 
 
Simulations 
To verify the ability of the SuStaIn algorithm to reveal subtypes and their progression 
patterns from heterogeneous patient snapshots we performed a stability analysis 
using simulated data. We simulated data drawn from the linear z-score model 
described in Methods: Mathematical model. We chose a set of default model 
parameters described subsequently, and then varied each parameter individually to 
establish the effect of different settings on the recovery of the subtypes and stages 
by the SuStaIn algorithm. 
 
Default settings 
By default we set the number of subjects 𝐽 to 𝐽 = 500, number of biomarkers 𝐼 to 
𝐼 = 10, number of clusters 𝐶 to 𝐶 = 3, and biomarker covariance 𝚺  to the identity 
matrix (no covariance). We simulate the SuStaIn stages from a uniform distribution, 

𝑃 𝑡 = 1, and hence . We simulate the SuStaIn subtypes using a 

fraction . This means that for the default number of clusters 

𝐶 = 3 we have , , . We simulate the progression pattern for each 

subtype to be a linear z-score model, parameterised by a sequence of z-score events 
with a random monotonic ordering (see Methods: Mathematical model), fixing 

 and for all biomarkers 𝑖. 
 
Number of subjects, biomarkers and clusters 
We vary: (i) the number of subjects 𝐽 as 𝐽 = 200, 𝐽 = 500 (default), and 𝐽 = 1000; (ii) 
the number of biomarkers 𝐼 as 𝐼 = 5, 𝐼 = 10 (default), and 𝐼 = 15; (iii) the number of 
clusters  𝐶 as 𝐶 = 1,𝐶 = 3 (default), and 𝐶 = 5. For 5 clusters the fractions are 

, , , , and . 

 
Biomarker covariance 
To assess the effect of biomarker covariance 𝚺 we simulated covariance matrices  𝚺 
in which each matrix had ones on the diagonal and randomly sampled (symmetric) 
off diagonal elements. The off diagonal elements were sampled from a uniform 
distribution between 0 and a maximum-value parameter, . We considered the 
settings: (default), , . 
 
Misdiagnosis 
We assessed the effect of misdiagnosis by simulating increasing proportions of 
outliers, 𝑓!, such that each outlier followed a random progression pattern, i.e. a linear 
z-score model parameterised by a sequence of z-score events with a random 
monotonic ordering (see Methods: Mathematical model). We considered the settings 
𝑓! = 0 (default),  𝑓! = 0.05,  𝑓! = 0.1, 𝑓! = 0.15, and 𝑓! = 0.2. 
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Distinct and overlapping modes 
SuStaIn relies on the assumption of multiple distinct progression patterns, however it 
is plausible that the underlying data may instead come from a spectrum of disease 
progression patterns. We therefore performed one final set of experiments assessing 
the performance of SuStaIn in the presence of a spectrum of progression patterns 
(overlapping modes), compared to multiple distinct progression patterns (distinct 
modes). For the distinct modes experiment we simulated two subtypes in which 

. For the overlapping modes experiment we randomly assigned individuals 

a proportion with which they expressed subtype 1 vs. subtype 2 using a uniform 
distribution over the values 0 to 1. We then simulated each individual’s data as the 
weighted average of their predicted data from the two subtype progression patterns, 
given their sampled SuStaIn stage. This generates uniform samples from a spectrum 
of progression patterns with two distinct extremes. 
 
Convergence 
For each of the 10 datasets per parameter setting we assessed convergence of the 
SuStaIn algorithm by checking that the solution reached from each of the 25 random 
start points (a set of linear z-score models with random monotonic orderings of z-
score events, and fractions 𝑓! = ⋯ = 𝑓! =

!
!
) per dataset is (a) within a 1×10-3% 

tolerance level of the maximum likelihood solution, and (b) within the uncertainty 
estimated by the MCMC (see Methods: Uncertainty estimation). We further checked 
that initialisation of the MCMC procedure from the ground truth solution gave the 
same result as the solution reached by the SuStaIn algorithm. 
 
Error in subtype progression patterns 
To evaluate the accuracy of the subtype progression patterns recovered by SuStaIn 
we simulated 10 datasets for each parameter setting and used SuStaIn to estimate 
subtypes and their progression, comparing the estimated progression patterns with 
the ground truth progression patterns. To enable direct comparison of the subtype 
progression patterns (i.e. a one to one mapping between the simulated and 
estimated subtypes), we fixed the number of subtypes estimated by SuStaIn to be 
the ground truth number of subtypes for the simulated data. We tested the ability of 
SuStaIn to recover the correct number of subtypes separately in an additional 
experiment (see Number of Subtypes). We compared the simulated and estimated 
subtype progression patterns (as shown in Supplementary Figures 1A, 3A, 5A, 7A, 
9A, 11A) by evaluating the Kendall rank correlation between the most probable 
subtype progression pattern estimated by SuStaIn and the ground truth. The Kendall 
rank correlation has a maximum of 1 when two sequences are identical, a minimum 
of -1 when two sequences are the inverse of one another, and an expectation of 0 
when two sequences are generated independently.  
 
Uncertainty in subtype progression patterns 
In addition to estimating the most probable subtype progression patterns, SuStaIn 
also estimates the uncertainty in the progression patterns through MCMC sampling. 
To assess the utility of the uncertainty estimates obtained from SuStaIn, we tested 
whether a reduction in accuracy of the progression pattern is indicated by a larger 
variance of the distribution of sampled progression patterns obtained from the MCMC 
samples. Specifically, we evaluated the distribution of the position of each biomarker 
event in the subtype progression pattern (as shown in Supplementary Figures 1B, 
3B, 5B, 7B, 9B, 11B) from the MCMC samples provided by SuStaIn. To make this 
distribution comparable over different experiments where the position of the 

f1 = f2 =
1
2
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biomarker events in the subtype progression patterns is different, we subtracted the 
ground truth position of each biomarker event. We additionally normalised this 
difference by the number of biomarker events in the subtype progression pattern so 
that the differences were comparable across subtype progression patterns with 
different numbers of biomarker events. 
 
Error in proportion of subjects in each subtype 
We used the datasets described previously to determine the mean absolute error in 
the fraction of subjects belonging to each subtype estimated by SuStaIn (as shown in 
Supplementary Figures 2A, 4A, 6A, 8A, 10A, 12A). 
 
Uncertainty in proportion of subjects in each subtype 
SuStaIn further estimates the uncertainty in the proportion of subjects belonging to 
each subtype through MCMC sampling. We assessed the utility of the uncertainty 
estimates obtained from SuStaIn by testing two properties of the distribution of the 
sampled fractions of subjects obtained from the MCMC samples: (A) whether a 
reduction in accuracy of the fraction is indicated by a larger variance of the 
distribution of fractions, and B) whether the distribution is centred around the ground 
truth fraction (i.e. the estimate is non-biased). We tested (A) and (B) by evaluating 
the distribution of the difference between the samples of the fraction of subjects 
belonging to each subtype provided by SuStaIn and the ground truth (as shown in 
Supplementary Figures 2B, 4B, 6B, 8B, 10B, 12B). This means that the distribution 
will have a mean of 0 when the MCMC samples are centred on the ground truth 
fraction with no bias in the estimate, with a larger variance indicating a larger 
uncertainty estimate. 
 
Number of subtypes 
To assess the ability of SuStaIn to recover the correct number of subtypes we 
simulated three datasets for each parameter setting and estimated the number of 
subtypes by implementing the full 10-fold cross-validation procedure and comparing 
the CVIC (see Methods: Cross-validation) for different subtype numbers. We then 
compared this estimated number of subtypes to the simulated number of subtypes. 
We chose to use only three datasets per parameter setting to reduce the 
computational load, which increases 10-fold when performing the cross-validation 
procedure. 
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Supplementary Results 
 
Convergence 
In all simulated datasets for all parameter settings we find that the SuStaIn algorithm 
displays good convergence: the solution reached from each random start point is 
typically within a 1×10-3% tolerance level of the maximum likelihood solution, and 
within the uncertainty estimated by the MCMC (see Methods: Uncertainty estimation). 
Moreover, in all simulated datasets for all parameter settings we found that 
initialisation of the MCMC procedure from the ground truth solution gave the same 
result as the solution reached by the SuStaIn algorithm. 
 
Number of subjects 
Supplementary Figure 1A shows the distribution of the Kendall rank correlation 
between the estimated subtype progression patterns and the ground truth for 
different numbers of subjects: 200 subjects (comparable to the GENFI dataset), 500 
subjects (the default setting, comparable to the ADNI dataset), and 1000 subjects 
(comparable to the combination of the ADNI 3T and 1.5T). As expected, larger 
subject numbers correspond to increasing accuracy of the subtype progression 
patterns: the average Kendall rank correlation across the 10 simulated datasets is 
0.86 for 200 subjects, 0.92 for 500 subjects, and 0.95 for 1000 subjects. However, 
even with only 200 subjects there is a high enough Kendall rank correlation to 
provide a meaningful indication of the subtype progression patterns. Supplementary 
Figure 1B shows the distribution of the position of each event stage in the subtype 
progression patterns, i.e. the uncertainty in the subtype progression patterns 
estimated by SuStaIn, for different numbers of subjects. As expected, the uncertainty 
in the estimated subtype progression pattern decreases with increasing subject 
numbers: the distribution of the position of each biomarker event has an average 
standard deviation across experiments of 0.10 for 200 subjects, 0.06 for 500 
subjects, and 0.05 for 1000 subjects.  
 
Supplementary Figure 2A shows the distribution of the error in the proportion of 
subjects assigned to each cluster for different numbers of subjects. SuStaIn 
accurately estimates the proportion of individuals belonging to each cluster: the mean 
absolute error is 0.054 for 200 subjects (an expectation of about 10/200 subjects 
misassigned), 0.026 for 500 subjects, and 0.022 for 1000 subjects. Supplementary 
Figure 2B shows the distribution of the proportion of individuals belonging to each 
cluster, i.e. the uncertainty in the proportion of individuals estimated by SuStaIn, for 
different numbers of subjects. As expected, this uncertainty decreases as the number 
of subjects increases, with an average standard deviation across experiments of 
0.048 for 200 subjects, 0.027 for 500 subjects, and 0.019 for 1000 subjects. The 
distribution has a mean of zero for the 500 and 1000 subject experiments, indicating 
a non-biased estimate of the proportion of individuals belonging to each subtype for 
large subject numbers. For 200 subjects SuStaIn slightly underestimates the 
proportion of individuals belonging to the largest cluster, and slightly overestimates 
the proportion of individuals belonging to the smallest cluster. 
 
For 200 and 500 subjects SuStaIn estimates the correct number of clusters in all 
simulated datasets. For 1000 subjects, SuStaIn estimates the correct number of 
clusters in two out of three datasets. In one dataset of 1000 subjects SuStaIn 
overestimates the number of clusters, giving four rather than three clusters, however, 
this cluster is clearly an outlier cluster accounting for only 3% of the data and with no 
predominant progression pattern. 
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Number of biomarkers 
Supplementary Figure 3A shows the distribution of the Kendall rank correlation 
between the estimated subtype progression patterns and the ground truth for 
increasing numbers of biomarkers: 5 biomarkers, 10 biomarkers (default setting) and 
15 biomarkers. We find that as the number of biomarkers increases, the accuracy of 
the subtype progression patterns stays more or less constant, with an average 
Kendall rank correlation of 0.90 for 5 biomarkers, 0.92 for 10 biomarkers, and 0.91 
for 15 biomarkers. Supplementary Figure 3B shows the distribution of the position of 
each event stage in the subtype progression patterns, i.e. the uncertainty in the 
subtype progression patterns estimated by SuStaIn, for different numbers of 
biomarkers. The uncertainty in the subtype progression patterns is larger for smaller 
numbers of biomarkers: the uncertainty in the position of each biomarker event has 
an average standard deviation of 0.09 for 5 biomarkers, 0.07 for 10 biomarkers, and 
0.06 for 15 biomarkers. This is likely because the trajectories of different subgroups 
are more strongly defined and separated by larger numbers of biomarkers.  
 
Supplementary Figure 4A shows the distribution of the error in the proportion of 
subjects assigned to each cluster for different numbers of biomarkers. SuStaIn 
accurately estimates the proportion of individuals belonging to each cluster: the mean 
absolute error is 0.053 for 5 biomarkers, 0.026 for 10 biomarkers, and 0.026 for 15 
biomarkers. Supplementary Figure 4B shows the distribution of the proportion of 
individuals belonging to each cluster, i.e. the uncertainty in the proportion of 
individuals estimated by SuStaIn, for different numbers of biomarkers. As expected, 
this uncertainty decreases as the number of biomarkers increases, with an average 
standard deviation across experiments of 0.049 for 5 biomarkers, 0.027 for 10 
biomarkers, and 0.024 for 15 biomarkers. The mean of the distribution is centred on 
zero for 10 and 15 biomarkers, indicating a non-biased estimate of the proportion of 
individuals belonging to each cluster. For 5 biomarkers, there is a very slight 
underestimation of the proportion of individuals belonging to the largest cluster, and a 
very slight overestimation the proportion of individuals belonging to the smallest 
cluster. 
 
For 10 and 15 biomarkers SuStaIn estimates the correct number of clusters in all 
simulated datasets. For 5 biomarkers SuStaIn estimates the correct number of 
clusters in two out of three datasets. In the remaining dataset two of the simulated 
subtype progression patterns are, by chance, similar to one another (the two least 
dominant subtype progression patterns have a Kendall rank correlation of 0.77). In 
this dataset SuStaIn underestimates the number of clusters, giving two rather than 
three clusters. 
 
Number of clusters 
Supplementary Figure 5A shows the distribution of the Kendall rank correlation 
between the estimated subtype progression patterns and the ground truth for 
increasing numbers of clusters: 1 cluster, 3 clusters (default setting) and 5 clusters. 
With increasing numbers of clusters the accuracy of the subtype progression patterns 
reduces, as there are fewer subjects per subtype. The average Kendall rank 
correlation is 0.97 for 1 cluster, 0.92 for 3 clusters and 0.87 for 5 clusters, still 
providing a good estimate of the subtype progression pattern for 5 clusters. 
Supplementary Figure 5B shows the distribution of the position of each event stage in 
the subtype progression patterns, i.e. the uncertainty in the subtype progression 
patterns estimated by SuStaIn, for different numbers of clusters. As expected, the 
uncertainty increases as the number of clusters increases, with an average standard 
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deviation across simulated datasets of 0.03 for 1 cluster, 0.07 for 3 clusters, and 0.10 
for 5 clusters. The uncertainty in the subtype progression pattern is largest for the 
least dominant cluster, which has the smallest number of subjects.  
 
Supplementary Figure 6A shows the distribution of the error in the proportion of 
subjects assigned to each cluster for different numbers of clusters: the mean 
absolute error is 0 for 1 cluster (the fraction is always 1 for 1 cluster), 0.026 for 3 
clusters, and 0.030 for 5 clusters. Supplementary Figure 6B shows the distribution of 
the proportion of individuals belonging to each cluster, i.e. the uncertainty in the 
proportion of individuals estimated by SuStaIn, for different numbers of clusters. As 
expected, this uncertainty increases as the number of clusters increases, with an 
average standard deviation across experiments of 0 for 1 cluster, 0.027 for 3 
clusters, and 0.027 for 5 clusters.  The distribution is centred round zero, i.e. the 
estimate of the proportion of individuals belonging to each cluster is unbiased for 
varying numbers of clusters. 
 
For varying numbers of clusters SuStaIn estimates the correct number of clusters in 
all simulated datasets for 1, 3 and 5 clusters. 
 
Biomarker covariance 
Supplementary Figure 7A shows the distribution of the Kendall rank correlation 
between the estimated subtype progression patterns and the ground truth for 
increasing amounts of biomarker covariance . As the covariance level increases 
the accuracy of the subtype progression pattern reduces very slightly: the average 
Kendall rank correlation is 0.92 for  (default setting), 0.91 for , and 
0.89 for . Supplementary Figure 7B shows the distribution of the position of 
each event stage in the subtype progression patterns, i.e. the uncertainty in the 
subtype progression patterns estimated by SuStaIn, for different levels of biomarker 
covariance. This uncertainty increases slightly with larger biomarker covariance, with 
an average standard deviation across simulated datasets of 0.07 for  
(default setting), 007 for , and 0.08 for .  
 
Supplementary Figure 8A shows the distribution of the error in the proportion of 
subjects assigned to each cluster for different amounts of biomarker covariance 
: the mean absolute error is 0.026 for , 0.029 for , and 0.037 for 

. Supplementary Figure 8B shows the distribution of the proportion of 
individuals belonging to each cluster, i.e. the uncertainty in the proportion of 
individuals estimated by SuStaIn, for different amounts of biomarker covariance. As 
expected, this uncertainty increases slightly as the covariance level increases, with 
an average standard deviation across experiments of 0.027 for , 0.027 for 

, and 0.028 for . The distribution is centred round zero, i.e. the 
estimate of the proportion of individuals belonging to each cluster is unbiased for all 
covariance levels. 
 
For varying biomarker covariance levels  SuStaIn estimates the correct number 
of clusters in all simulated datasets for for ,  and . 
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Misdiagnosis 
Supplementary Figure 9A shows the distribution of the Kendall rank correlation 
between the estimated subtype progression patterns and the ground truth for an 
increasing proportion of misdiagnosed subjects. As the proportion of misdiagnosed 
individuals increases the Kendall rank correlation decreases: the average Kendall 
rank correlation is 0.92 for 𝑓! = 0, 0.91 for 𝑓! = 0.05, 0.89 for 𝑓! = 0.1, 0.88 for 
𝑓! = 0.15, and 0.83 for 𝑓! = 0.2, still providing a good estimate of the subtype 
progression pattern for 15% and 20% outliers. Supplementary Figure 9B shows the 
distribution of the position of each event stage in the subtype progression patterns, 
i.e. the uncertainty in the subtype progression patterns estimated by SuStaIn, for 
increasing proportions of misdiagnosed subjects. As expected, the uncertainty 
increases as the proportion of misdiagnosed subjects increases, with an average 
standard deviation across simulated datasets of 0.07 for 𝑓! = 0, 0.07 for 𝑓! = 0.05, 
0.08 for 𝑓! = 0.1, 0.08 for 𝑓! = 0.15, and 0.10 for 𝑓! = 0.2. 
 
Supplementary Figure 10A shows the distribution of the error in the proportion of 
subjects assigned to each cluster for increasing proportions of misdiagnosed 
subjects. SuStaIn accurately estimates the proportion of individuals belonging to 
each cluster: the mean absolute error is 0.026 for 𝑓! = 0, 0.027 for 𝑓! = 0.05, 0.038 
for 𝑓! = 0.1, 0.035 for 𝑓! = 0.15, and 0.043 for 𝑓! = 0.2. Supplementary Figure 10B 
shows the distribution of the proportion of individuals belonging to each cluster, i.e. 
the uncertainty in the proportion of individuals estimated by SuStaIn, for different 
numbers of subjects. As expected, this uncertainty increases slightly as the 
proportion of misdiagnosed individuals increases, with an average standard deviation 
across experiments of 0.027 for 𝑓! = 0, 0.025 for 𝑓! = 0.05, 0.030 for 𝑓! = 0.1, 
0.028 for 𝑓! = 0.15, and 0.029 for 𝑓! = 0.2. The distribution has a mean of zero for 
𝑓! = 0 and 𝑓! = 0.05 subject experiments, indicating a non-biased estimate of the 
proportion of individuals belonging to each subtype for small proportions of 
misdiagnosed individuals. For 𝑓! = 0.1, 𝑓! = 0.15, and 𝑓! = 0.2, SuStaIn slightly 
underestimates the proportion of individuals belonging to the largest cluster, and 
slightly overestimates the proportion of individuals belonging to the smallest cluster. 
 
For increasing levels of misdiagnosed individuals, SuStaIn increasingly 
overestimates the number of subtypes in the dataset (the average number of 
estimated subtypes is 3.67 for 𝑓! = 0.05, 4 for 𝑓! = 0.1, 6 for 𝑓! = 0.15, and 5.67 for 
𝑓! = 0.2 across datasets). However, each of the additional clusters is clearly an 
outlier cluster, accounting for a small number of individuals (most of the outlier 
clusters account for less than 5% of the data, and all account for less than 10%) and 
with no predominant progression pattern. This is somewhat to be expected as 
SuStaIn is specifically designed to group common features within a dataset and has 
no specific mechanism to model outliers, and is in contrast to the results we find in 
the ADNI (Figure 3) and GENFI studies (Figure 2), which indicate proportions of 
individuals of 27% for ADNI and 17% for GENFI belonging to the smallest subtypes. 
This supports the existence of distinct progression patterns.  
 
Distinct and overlapping modes 
Supplementary Figure 11A shows the distribution of the Kendall rank correlation 
between the estimated subtype progression patterns and the ground truth for distinct 
and overlapping modes. The Kendall rank correlation reduces when the modes are 
overlapping, as the SuStaIn model does not account for a spread of progression 
patterns. The average Kendall rank correlation is 0.94 for distinct modes and 0.81 for 
overlapping modes, still providing a reasonable correlation with the two ends of the 
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spectrum for overlapping modes. Inevitably the estimated clusters become closer 
together in the case of overlapping modes. This reduces the Kendall rank correlation 
between the estimated progression patterns and the ground truth progression pattern 
of each end of the spectrum. Supplementary Figure 11B shows the distribution of the 
position of each event stage in the subtype progression patterns, i.e. the uncertainty 
in the subtype progression patterns estimated by SuStaIn, for distinct and 
overlapping modes. This uncertainty has an average standard deviation across 
simulated datasets of 0.05 for distinct modes and 0.12 for overlapping modes. As 
expected the uncertainty in the position of the biomarker events for overlapping 
modes is asymmetric, because there is a tendency to choose two subtype 
progression patterns that are closer to the middle of the spectrum. 
 
Supplementary Figure 12A shows the distribution of the error in the proportion of 
subjects assigned to each cluster distinct and overlapping modes: the mean absolute 
error is 0.032 for distinct modes and 0.067 for overlapping modes. Supplementary 
Figure 12B shows the distribution of the proportion of individuals belonging to each 
cluster, i.e. the uncertainty in the proportion of individuals estimated by SuStaIn, for 
distinct and overlapping modes, which has an average standard deviation across 
simulated datasets of 0.027 for distinct modes and 0.046 for overlapping modes. The 
distribution is centred around zero, i.e. the estimate of the proportion of individuals 
belonging to each cluster is unbiased for both distinct and overlapping modes. 
 
For distinct modes SuStaIn estimates the correct number of clusters in all simulated 
datasets. For overlapping modes SuStaIn chooses two clusters for two datasets and 
three clusters for the remaining dataset. This demonstrates that SuStaIn may still 
recover distinct progression patterns when the data comes from a distributed set of 
progression patterns. However, SuStaIn still provides useful information about the 
extrema within the spectrum of progression patterns.  
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Supplementary Discussion 
 
We assessed the effect of a variety of different properties in simulation: varying 
numbers of subjects, biomarkers and clusters, biomarker covariance, misdiagnosis 
and the effect of distinct vs. overlapping modes. The simulations demonstrate that 
SuStaIn shows good convergence properties across all different simulation settings. 
The results provide confidence in the ADNI and GENFI results by demonstrating that 
SuStaIn can provide accurate information on the subtype progression patterns for 
datasets with comparable numbers of subjects, biomarkers, and clusters to ADNI, 
and that whilst the subtype progression patterns are less accurate for datasets of the 
size of GENFI, SuStaIn still provides a meaningful indication of the progression in 
each subtype, showing a good correlation with the ground truth subtype progression 
patterns. Assessment of the effect of biomarker covariance indicates that the 
assumption of independent biomarker variance made by SuStaIn has little effect on 
the ability of SuStaIn to estimate the subtype progression patterns. The simulations 
further demonstrate that SuStaIn can handle a large (up to 20%) proportion of 
misdiagnosed individuals. Assessment of the performance of SuStaIn when the 
underlying progression patterns are made up of overlapping modes, which consist of 
a spectrum of progression patterns rather than multiple distinct progression patterns, 
demonstrates that SuStaIn may still recover distinct modes. However, SuStaIn is able 
to estimate the extrema of this space, providing a useful indication of the key modes 
of the spectrum of progression patterns.  
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Supplementary Figure 1 
A.

 
B. 

 
Effect of increasing subject numbers on the estimation of the subtype progression 
patterns by the SuStaIn algorithm. Subfigure A shows a box plot of the Kendall rank 
correlation between the most probable sequence estimated by SuStaIn and the 
ground truth across simulated datasets, with a higher Kendall rank correlation 
indicating more accurate estimation of the subtype progression patterns (maximum 1, 
minimum -1). Subfigure B shows a box plot of the distribution of the subtype 
progression patterns estimated by SuStaIn across simulated datasets, obtained from 
the MCMC samples of the uncertainty in the subtype progression patterns outputted 
by SuStaIn. In B., a wider distribution indicates a greater uncertainty estimate, and a 
distribution centred on zero indicates a non-biased estimate. The labels on the x-axis 
specify (population size, cluster index). Thus, within each group of the same 
population size the three boxes give an idea of how A and B change for the most 
prevalent subtype (cluster 1, 𝑓 = 4/9) compared to the least prevalent subtype 
(cluster 3, 𝑓 = 2/9).   
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Supplementary Figure 2 
A. 

 
B. 

 
Effect of increasing subject numbers on the estimation of the proportion of individuals 
belonging to each subtype by the SuStaIn algorithm. Subfigure A shows a box plot of 
the mean absolute error between the most probable proportion estimated by SuStaIn 
and the ground truth across simulated datasets, with an error closer to zero indicating 
more accurate estimation of the subtype progression pattern. Subfigure B shows a 
box plot of the distribution of the proportion of individuals assigned to each subtype 
estimated by SuStaIn across simulated datasets, obtained from the MCMC samples 
of the uncertainty in the proportion of individuals belonging to each subtype outputted 
by SuStaIn. In B., a wider distribution indicates a greater uncertainty estimate and a 
distribution centred on zero indicates a non-biassed estimate, with a negative mean 
difference indicating underestimation and a positive mean difference indicating 
overestimation. The labels on the x-axis specify (population size, cluster index). 
Thus, within each group of the same population size the three boxes give an idea of 
how A and B change for the most prevalent subtype (cluster 1, 𝑓 = 4/9) compared to 
the least prevalent subtype (cluster 3, 𝑓 = 2/9).   
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Supplementary Figure 3 
A. 

 
B. 

 
As Supplementary Figure 1, but for different numbers of biomarkers. 
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Supplementary Figure 4 
A. 

 
B. 

 
As Supplementary Figure 2, but for different numbers of biomarkers. 
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Supplementary Figure 5 
A. 

 
B. 

 
As Supplementary Figure 1, but for different numbers of clusters. 
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Supplementary Figure 6 
A.

 
B. 

 
As Supplementary Figure 2, but for different numbers of clusters. 
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Supplementary Figure 7 
A. 

 
B.

 
As Supplementary Figure 1, but for different biomarker covariance levels . 
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Supplementary Figure 8 
A. 

 
B. 

 
As Supplementary Figure 2, but for different biomarker covariance levels . 
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Supplementary Figure 9 
A. 

 
B. 

 
As Supplementary Figure 1, but for different proportions of misdiagnosed individuals. 
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Supplementary Figure 10 
A.

 
B. 

 
As Supplementary Figure 2, but for different proportions of misdiagnosed individuals. 
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Supplementary Figure 11 
A. 

 

B.  
As Supplementary Figure 1, but for different mode types. 
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Supplementary Figure 12 
A. 

 
B. 

 
As Supplementary Figure 2, but for different mode types. 
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Supplementary Figure 13 

 
SuStaIn modelling of each genetic type in GENFI separately. Subfigure A shows the 
subtype progression patterns obtained from SuStaIn modelling of each genetic type. 
Diagrams structured as in Figure 2A. SuStaIn estimates four phenotypes in total: one 
phenotype in the GRN mutation carriers, which we describe as a GRN phenotype; 
one major phenotype in the MAPT mutation carriers (two groups: one major 
phenotype and a subsidiary group with no predominant progression pattern), which 
we describe as a MAPT phenotype; two phenotypes in the C9orf72 mutation carriers, 
which we describe as a frontotemporal C9orf72 phenotype and a subcortical C9orf72 
phenotype. Subfigure B shows the similarity (see Methods: Similarity between two 
progression patterns) between subtypes obtained from SuStaIn modelling of each 
genetic type in GENFI separately (shown in A) and subtypes obtained from SuStaIn 
modelling of all mutation carriers in GENFI as a whole (shown in Figure 2A). 
Subfigure B shows that the subtype progression patterns obtained from SuStaIn for 
each genetic type in GENFI separately are in good agreement with the subtype 
progression patterns estimated from pooling all mutation carriers in GENFI (Figure 
2A). This result demonstrates that SuStaIn is able to correctly identify the GRN and 
MAPT neuroanatomical phenotypes without any knowledge of genotype, and 
provides further evidence that the C9orf72 group is best described as two distinct 
neuroanatomical phenotypes. 
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Supplementary Figure 14 

 
C.  

 
Reproducibility of the GENFI and ADNI results under cross-validation. Subfigure A 
shows the reproducibility of the GENFI results in Figure 2A and subfigure B shows 
the reproducibility of the ADNI results in Figure 3. Each box plot shows the similarity 
between the SuStaIn subtypes estimated from each pair of cross-validation folds for 
A. the GENFI dataset and B. the ADNI dataset. Subfigure C shows the variation 
across folds for an example progression pattern: the frontotemporal lobe subtype 
estimated in GENFI. This example subtype was chosen to demonstrate the maximal 
variability of a subtype progression pasttern across cross-validation folds. 
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Supplementary Table 1 
 GRN MAPT C9orf72 
Asymmetric frontal  93% (13) 9% (1) 17% (4) 
Temporal  0% (0) 91% (10) 25% (6) 
Frontotemporal 0% (0) 0% (0) 38% (9) 
Subcortical 7% (1) 0% (0) 21% (5) 
Accuracy 93% (13/14) 91% (10/11) 58% (14/24) 
As Table 1, but using a simple (non-optimised) subtype assignment strategy. The 
simple assignment strategy (see Methods: Classification of mutation groups using 
subtypes) only modestly reduces the accuracy of the assignment, giving a balanced 
accuracy of 81% rather than 86%. Again, the results show that SuStaIn can 
accurately discriminate genotypes, validating the ability of SuStaIn to identify distinct 
phenotypes that align with known genetic groups. 
 
Supplementary Table 2 
 GRN MAPT C9orf72 
Severe frontal  64% (9) 9% (1) 17% (4) 
Severe temporal 0% (0) 64% (7) 17% (4) 
Mild frontotemporal 36% (5) 27% (3) 67% (16) 
Accuracy 64% (9/14) 64% (7/11) 67% (16/24) 
As Table 2, but using a simple (non-optimised) subtype assignment strategy for 
comparison with Supplementary Table 1. Again, the results show that SuStaIn 
(Supplementary Table 1) provides much better discrimination of the different 
genotypes than the subtypes-only model shown here, demonstrating the added utility 
of a model that accounts for heterogeneity in disease stage.  
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Supplementary Table 3 
 Likelihood ratio  Likelihood ratio test 

p-value 
SuStaIn vs.  
Subtypes-only model 

4.65 × 103 3.96 × 10-5 

SuStaIn vs.  
Stages-only model 

3.05 × 102 7.18 × 10-4 

Comparison of SuStaIn for predicting the risk of conversion from mild cognitive 
impairment to Alzheimer’s disease with models that only account for heterogeneity in 
either disease subtype (subtypes-only model) or disease stage (stages-only model). 
The likelihood ratio of SuStaIn vs. alternative model is the ratio of the likelihood of a 
Cox Proportional Hazards Model estimated using subtypes and stage from SuStaIn 
as predictors compared to the likelihood of a Cox Proportional Hazards Model 
estimated using variables from the alternative model as predictors. A likelihood ratio 
of above 1 indicates that the predictors from SuStaIn provide a better fit. The 
likelihood ratio test p-value indicates whether the predictors from SuStaIn provide a 
significantly better fit than the alternative model predictors. This result shows that 
SuStaIn provides a significantly better estimate of the risk of conversion from mild 
cognitive impairment to Alzheimer’s disease than a subtypes-only or stages-only 
model, i.e. both the disease subtypes and the disease stages estimated by SuStaIn 
are useful for estimating the risk of conversion. 
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Supplementary Figure 15 

 
Flowchart of the processes involved in the SuStaIn model fitting. The overall SuStaIn 
model fitting procedure is shown in the black box, with the sub-procedures single 
cluster E-M and split-cluster E-M being shown in the green and blue boxes, 
respectively. 𝐌! denotes a SuStaIn model with 𝐶 clusters, consisting of a set of 
sequences 𝑺!,… , 𝑺! and fractions 𝑓!,… , 𝑓!. 
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Supplementary Table 4 
Biomarker type Dataset(s) Individual biomarkers Use 

Regional MRI 
volumes 

GENFI 
ADNI 3T 
ADNI 1.5T 

Frontal lobe 

To estimate the SuStaIn models in 
Figures 2A, 3, 4 and Supplementary 
Figure 13A (following correction for 
head size, demographics, and 
number of APOE4 alleles (ADNI 
only), and transformation to a 
positive z-score relative to a control 
population) 

Temporal lobe 
Parietal lobe 
Occipital lobe 
Cingulate 
Insula 
Accumbens 
Amygdala 
Caudate 
Hippocampus 
Pallidum 
Putamen 
Thalamus 

GENFI Cerebellum 
Asymmetry 

Head size 
GENFI 
ADNI 3T 
ADNI 1.5T 

Total intracranial 
volume 

To correct regional MRI volumes for 
head size (correction learnt in 
control population and propagated 
to whole population) 

Genotype 

GENFI 

Non-carrier To define a control population  

Mutation carrier 
To define the population in which to 
estimate the SuStaIn model in 
Figure 2A 

Mutation type: GRN, 
C9orf72 or MAPT 

To define the population in which to 
estimate the SuStaIn models in 
Supplementary Figure 13A; 
To compare the SuStaIn model in 
Figure 2A to the genotype labels 
(Figure 2B, Figure 5A, Table 1) 

ADNI 3T 
ADNI 1.5T 

Number of APOE4 
alleles 

To correct regional MRI volumes for 
number of APOE4 alleles 
(correction learnt in control 
population and propagated to whole 
population) 

Diagnosis 

GENFI Pre-symptomatic or 
symptomatic 

To look at the identifiability of 
SuStaIn subtypes (Figure 5A and 
Figure 5B): To look at the 
distribution of the SuStaIn stages 
amongst diagnostic groups (Figure 
5C and Figure 5D) ADNI 3T 

ADNI 1.5T 

Diagnosis label: CN, 
MCI or AD 

CN 
To define a control population 
(together with an amyloid negative 
CSF result) 

CSF Abeta1-42 ADNI 3T 
ADNI 1.5T 

Amyloid negative 
(CSF Abeta1-42 > 
192pg per ml) 

To define a control population 
(together with a diagnosis of 
cognitively normal) 

Demographic 
information 

GENFI 
ADNI 3T 
ADNI 1.5T 

Age To correct regional MRI volumes for 
subject demographics (correction 
learnt in control population and 
propagated to whole population) 

Sex 

Years of Education 

Table detailing the biomarkers used in the SuStaIn modelling for different datasets. 
CN = cognitively normal; MCI = mild cognitive impairment, AD = Alzheimer’s disease; 
CSF = cerebrospinal fluid. 
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Supplementary Table 5 
Dataset Subset J I Cmax N 

GENFI 

All mutation carriers 172 

15 

5 

33 GRN  76 
3 C9orf72 63 

MAPT 33 

ADNI 3T 793 13 5 31 
1.5T 576 30 

Table detailing the SuStaIn algorithm settings for different data subsets.  𝐽 is the 
number of subjects,  𝐼 is the number of biomarkers, 𝐶!"# is the maximum number of 
clusters fitted, and 𝑁 is the number of z-score events. 
 
Supplementary Table 6 

  GENFI ADNI 3T ADNI 1.5T 
  R zmax R zmax R zmax 

Frontal 3 5 2 3 3 5 
Temporal 3 5 3 5 3 5 
Parietal 2 3 3 5 3 5 
Occipital 1 2 2 3 2 3 
Cingulate 2 3 3 5 2 3 

Insula 3 5 2 3 2 3 
Accumbens 3 5 3 5 2 3 
Amygdala 3 5 3 5 3 5 
Caudate 1 2 1 2 1 2 

Hippocampus 3 5 3 5 3 5 
Pallidum 1 2 2 3 2 3 
Putamen 3 5 2 3 2 3 
Thalamus 2 3 2 3 2 3 
Cerebellar 1 2         
Asymmetry 2 3   

   Table detailing the SuStaIn algorithm settings for different biomarkers for the GENFI, 
ADNI 3T and ADNI 1.5T datasets. The first column on left hand side lists the 
biomarkers included in the SuStaIn model. 𝑅  is the number of z-scores included for 
biomarker 𝑖, and 𝑧!"# is the maximum z-score modelled for biomarker  𝑖. 
 
 


